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FOREWORD

This investigation of "Effects of High Combustion Chamber Pressure on Rocket Noise
Environment" was conducted by the Eastern Op6rations Division of Wyle Laboratories for the
National Aeronautics and Space Administration, under Contract No. NAS8-27298. Studies
in this program were performed under the technical direction of Messrs. S.H. Guest and
J.H. Jones of the Unsteady Gasdynamics Branch, Marshall Space Flight Center.

The author wishes to extend his appreciation to Messrs. S. Yam and D.M. Lister for their
excellent work of developing computer programs for rocket noise predictions, and to
Dr. M.V. Lowson of the University of Technology, Loughborough, England, for his consulting
during the course of this program. Most of the technical discussion in Section 4.0 of this
report was prepared by Dr. Lowson.



ABSTRACT

In this report, the acoustical environment for the high chamber pressure engine has been
examined in detail by using both convention methods and advanced theoretical analysis. The
influence of the elevated chamber pressure on the rocket noise environment is established
through the increases of exit velocity, flame temperature, and changes of basic engine
dimensions. As compared with previous large rocket engines, the overall sound power level
is found to be 1.5 dB higher if the thrust is the same. The peak Strouhal number has shifted
about one octave lower to a value near 0.01. Other important findings related to apparent
sound source location and directivity patterns have also been reached in this study.
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1.0 INTRODUCTION

The high chamber pressure engine is one of the advanced propulsion systems which meets
the requirements of the Space Shuttle booster and orbiter stages. At elevated chamber
pressures, the combustion process is permitted to proceed at a higher temperature, and
more thermal energy in the combustion produces can be recovered as mechanical energy.
For engine operations in the atmosphere, the high chamber pressure further permits a
higher expansion ratio across the nozzle without penalties of over-expansion.

The engine performance parameters for the high p c engine are significantly different

from those of the large rocket engines currently in use. With these changes in perfor-
mance, corresponding changes in the acoustic characteristics of the exhaust flow can
be expected. The principal objectives of this investigation are to predict the high pc

engine noise environment and to compare it with those of conventional rocket engines.

According to the conventional methods of rocket noise prediction, the overall noise
environment depends only on parameters such as the exit velocity, exit diameter, and
overall mechanical power. Several key properties of rocket exhaust noise can be
represented in nondimensional form:

· The spectral function of overall noise emission,

· The apparent sound source location as a function of frequency,

· Directivity patterns, and

· Acoustic power as a function of overall mechanical power.

Previous experimental measurements have verified that these nondimensional properties
of the noise environment collapsed quite well over a large collection of large and
small rockets.

There are several reasons that the accuracy of these nondimensional properties of rocket
noise should be reexamined. Firstly, according to theories of aerodynamical noise
radiation, the noise environment of a high speed jet exhaust is mainly governed by the
convection velocity of the turbulent flow. Temperature of the jet is also known to have
some effects on the characteristics of the noise field. For the liquid or solid fuel rocket
engines developed prior to the high Pc engine, the exit velocity is limited mainly in the

7000 fps to 9000 fps range. The Mach number is normally in the order of 3 to 3.5.
However, the high Pc engine has a typical exit velocity of approximately 13,000 fps,

which is almost twice the lower speed limit for previous rocket engines. Furthermore,
the flame temperature and the local speed of sound in the exhaust flow are also much
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higher for the high pc engine. Secondly, the Space Shuttle is a reusable system which

may experience 50 to 100 missions during its service life time. For an economical
standpoint, it is necessary to define the acoustical environments as accurately as possible
such that the vehicle system will not be penalized by excessively conservative designs
owing to the uncertainties in the dynamical excitation levels. In addition to the above
practical requirements, it seems also timely to undertake a basic study to identify the
key mechanisms of rocket noise generation, and their trends of variation with changes
of the turbulent exhaust flow parameters. Analysis related to this problem is rather
scarce in the literature, and increased knowledge in understanding the basic rocket
noise mechanisms is definitely required for accurate predictions of the shuttle vehicle
noise environment.

In this report, the immediately expected characteristics of the high pc engine noise

environment have been established through conventional methods. Following this
initial analysis, an extensive numerical study, based on the generalized aerodynamical
noise theory, has been undertaken to evaluate the fundamental characteristics of high
pC noise environment. Important conclusions have been arrived at in the following
areas:

· Overall noise spectrum

· Sound source location

· Directivity patterns, and

· Source strength distribution along the exhaust flow.

In this report, Section 2.0 is a discussion of the performance characteristics of the
high pc engine and the mean flow characteristics of the rocket exhaust. Section 3.0

is an initial analysis of the characteristics of the overall noise environment by using
conventional methods of rocket noise predictions. In Sections 4.0 through 6.0, a
theoretical analysis of the high pc engine noise characteristics is reported. It begins

with a discussion of turbulence structures in a turbulent jet in Section 4.0, followed by
the presentation of the numerical results of noise prediction in Section 5.0, and finally,
the conclusions are summarized in Section 6.0. Various tabulated numerical results
are documented in the Appendix.
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2.0 CHARACTERISTICS OF THE HIGH CHAMBER PRESSURE ENGINE AND THE
FLOW STRUCTURE

Advanced propulsion systems with a high combustion chamber pressure have some clear
advantages for uses in the booster stage of the Space Shuttle vehicles. An important
effect of increased chamber pressure is to elevate the heat of reaction and the adiabatic
flame temperature through inhibition of endothermic decomposition (Reference 1). The
higher pressure of combustion and expansion reduces losses associated with energy
trapped in dissociated species. This effect favors mixture ratios close to the stoichio-
metric value and combustion at higher temperatures (see Figures 1 and 2). Without the
higher pressure, the gain in combustion temperature will be penalized by excessive and
unrecoverable deposition of energy in dissociated species. The undesirable increase in
molecular weight of the combustion product is not of sufficient importance to override
the advantages associated with the decreased endothermic decompositions or increased
exothermic recombinations.

If the rocket is to operate within an atmosphere, increased chamber pressure will premit
an increase in expansion ratio without the losses owing to overexpansion which would be
encountered at lower chamber pressures. For a fixed vehicle diameter and thus a
maximum nozzle exit area, higher area ratios are obtained at higher pressures simply
because the throat area decreases for fixed mass flow. This effect indeed contributes
to increased performance for both atmospheric and space operations.

In reviewing the effects of chamber pressure upon propellant performance, in this case
as expressed in terms of specific impulse, one must be careful to identify those para-
meters which are held constant. If the pressure ratio across the nozzle is a constant,
the effect of chamber pressure is a minor one. Increasing the chamber pressure from
100 to 10,000 psia produces less than a two second change in the theoretical specific
impulse for the hydrogen/oxygen system. A more meaningful presentation of the
effect of chamber pressure is obtained by examination of sea level specific impulse at
a fixed expansion ratio in terms of the area ratio rather than the pressure ratio of the
nozzle. The advantage of increasing chamber pressure is pronounced. To summarize,
the advantage of high chamber pressure at a fixed area ratio in terms of specific impulse
is obtained only in operating under atmospheric conditions, that is, with a significant
ambient pressure. Under vacuum ambient conditions, any apparent increase in specific
impulse associated with increased chamber pressure must be associated with increasing
the nozzle expansion ratio and is in reality independent of the chamber pressure.

The enthalpy is dependent upon both the temperature and the pressure through composition
changes. Large enthalpy increases at moderate temperatures are associated with decom-
position reactions. The value of increasing the propellant temperature to produce
dissociation for the purpose of taking advantage of large propellant enthalpies will be
great if the enthalpy so invested can be recovered in the expansion process. In a high
Pc engine, such recovery is greatly enhanced.
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A chamber pressure effect of probable significant importance but as yet ill-defined is
related to the acceleration of reaction kinetics at elevated pressure. Increased pressures
in the combustion chamber should speed reaction kinetics and favor production of equili-
brium combustion products which in turn yields increased performance. Similarly, the
gases in the nozzle will be at higher pressures and, thus, the exothermic three body
recombination reactions will be accelerated. The transition from equilibrium to frozen
flow in the nozzle should thereby be delayed and specific impulse increased. Although
the transition zone in a high p engine will be located significantly further downstream

from the throat, it will still be inside the nozzle. Under the accelerated recombination
conditions, most of the available energy in the combustion process becomes available
to the flow as mechanical energy. Residue thermodynamical and chemical kinetic
fluctuations in the exhaust flow will be at a minimum.

It is precisely this latter property that simplifies the conditions under which the noise
predictions are to be made for the high pc engines. The temperature or entropy

fluctuations in a high pc engine exhaust flow should actually be no stronger than those

in a conventional rocket exhaust. Hence the change in acoustical environments as
produced by the rocket engine should be mainly associated with Mach number, exit
velocity, temperature profile, and the evolution of the jet structure along the axis of
the jet.

The engine performance data for the high chamber pressure engine are given in Table I.
Those corresponding parameters for the F-1 engine are also given in the same table for
direct comparison. In reference to the F-i engine, the chamber pressure for the high
Pc engine has been elevated three-fold to 3000 psia. The exit velocity has been
increased from 9320 fps to 13,890 fps. For both engines, the stagnation temperature and
the mass flow per unit area at the nozzle exit remain approximately the same. The
overall performance of the high Pc engine is significantly higher. For the same given

thrust, the exit area and the exit diameter of the high p engine are only 0.662 and
0.814 times the corresponding values of the F-i engine, respectively. The specific
enthalpy for the high pc engine is much higher. Since the mass flow per unit exit area

remains the same, the overall temperature in the downstream regime of the exhaust
plume for the high pc engine should also be much higher.

According to the given engine performance parameters, the structure of the turbulent
exhaust plume can be predicted with reasonable accuracy by using existing methods.
In Reference 2, Donaldson and Gray have developed a general method of predicting
the mixing flow structure for high temperature, supersonic jet exhaust flows. The
analysis is based on a mixing hypothesis where the integral effect of the turbulent
mixing process is described by a so-called mixing parameter K. It was found experi-
mentally that this mixing parameter depends only on the local Mach number in the
exhaust flow, and it varies very little with the local temperature or the molecular
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TABLE i . ROCKET ENGINE PERFORMANCE CHARACTERISTICS

Chamber Pressure

Velocity

Mass Flow Rate

Mach Number'

Diameter at Exit

Expansion Ratio

Thrust

Specific Impulse

Nozzle Exit Area

Area per 106 lb Thrust

Exit Temperature

Stagnation Temperature

Exit Molecular Weight

Exit Density

Enthalpy Ratio (Reference
to ambient air enthalpy sea
level)

F-1

1090 psia

9320 fps

5690 Ib/sec

3.7

139.5 in.

16

1,500,000 lbs

264 sec

106.1 ft2

70.8 ft2

1461 K

3460 K

24.8

0.00565 Ib/cu ft

24

High Pc

3000 psia

13890 fps

1375 Ib/sec

4.05

68.8 in0

34.6

550,000 lbs

420 sec

25.80 ft2

40.90 ft2

1385 K

3640 K

1205

0.00388 Ib/cu ft

49.5

a I

5
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weights of the mixing species. Detailed descriptions of this method can be found in
References 2, 3 and 4.

By using the Donaldson and Gray method, the exhaust flow structures for both the high
p and the F-i rocket engines have been calculated. The local Mach number U/c,

the convection Mach number U/c , and the local speed of sound ratio c/c along

the centerline of these exhaust flows are shown in Figures 3 and 4. The spreading of the
jet boundary, which is defined here as the 10% velocity point, is shown in Figure 5.
Other aerodynamical parameters such as the local specific heat ratio, local molecular
weight of the mixing gases, local temperature, etc., have been computed at 16 stations
along the flow axis with six radial locations at each station. These values have been
presented in the Appendix in tabular form.

There are a number of important differences between the structures of these two exhaust
flows. For the high pc engine, the laminar core length is about 25 D , as compared to

a core length of 20 D for the F-1. Along the axis of the flow, the sonic point is located
at 55 D downstream of the nozzle exit, while the convection Mach number reaches 1.0
at approximately 88 D. These locations are both further downstream from the nozzle exit
than the corresponding points in the F-1 rocket exhaust flow. The above differences are
quite significant from the standpoint of noise environmental studies. In previous experi-
mental investigations, the strongest noise radiation region was found to correspond closely
with the sonic point of the mixing jet flow. Hence, a change of the location of the
sonic point will probably affect the noise source distribution along the axis of the exhaust
flow. Furthermore, the apparent sound source location and the directivity pattern in
the near-field and far-field are also dependent upon the velocity and temperature distri-
butions in the flow domain. As the flow structure changes, corresponding changes in
the sound field can be expected.

Along the entire length of the exhaust flow, the local speed of sound is much higher
for the high pc engine. In the mixing region of the flow, the higher value of the

local speed of sound is caused almost entirely by the smaller molecular weight of the
combustion products of the high pc engine. Owing to the turbulent mixing mechanisms,

the local molecular weight of the gas mixture in the developed portion of the exhaust
flow approaches rapidly the value of the ambient air. This is true for both the high pc

and the F-1 engines. Nevertheless, the local speed of sound at x/D = 200 for the
high Pc engine is still 40% higher than the corresponding value for the F-i engine.

This is because the specific enthalpy of the high Pc flow is twice as much as the specific

enthalpy of the F-i exhaust, while the mass flow per unit exit area remains approxi-
mately the same for both engines.
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Figure 5 shows that the divergence of the flow boundary for the high pc engine is

somewhat slower than the F-1 rocket. Within the first 100 D of the exhaust plume,
the flow is approximately 20% narrower. However, computations indicate that the
jet boundaries for these two engines approach a common asymptotic value at stations
further downstream.

In the conventional techniques of rocket noise predictions, the parameters of rocket
engine performance as given in Table I would provide sufficient information for the
evaluation of acoustical environment for the launch vehicle. The overall sound power,
the frequency characteristics, and noise spectra at specific locations can be directly
estimated. However, all these calculations depend upon predetermined spectral function
of noise intensity, the apparent sound source location at given Strouhal numbers, and
the directivity patterns at various frequencies. The accuracy of these empirical
functions is directly related to the precision and relevance of the experimental data
from which the empirical functions are derived. For the high pc engine, parameters

such as convection Mach number and local temperature are significantly different from
the large rockets currently in use. Hence, there is a compelling need to examine the
possible changes in these empirical standards.

In Reference 5, applications of the generalized aerodynamical noise theory to rocket
noise prediction have been discussed in detail. By using this theory, the characteristics
of the acoustic environment for hot, supersonic jets can be computed provided that the
mean flow parameters of the exhaust flow and the characteristics of the turbulence
structure are assumed known. By means of the Donaldson and Gray method of free
jet mixing computation, the mean flow parameters for the rocket exhaust flows can be
predicted in great detail. However, there is no satisfactory way to define the
turbulence structure in a supersonic free jet. In Reference 5, a model of the turbulence
structure has been assumed. It is interesting to note that the general noise radiation
characteristics have been reproduced with considerable accuracy.

In the present study, a detailed computer program has been developed for rocket noise
calculations. The entire rocket exhaust flow is divided into a large number of small
volume elements. Noise radiation from each volume element is then computed. The
summation over a given set of the volume elements or over all the volume elements
will then represent the noise radiation from a certain segment of the jet, or the overall
noise radiation from the entire flow. The results of computation and the associated
discussions will be given in the later portion of this report.
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3.0 ESTIMATION BY CONVENTIONAL METHODS

A number of methods have been developed in the past decades for practical applications
of rocket noise predictions (References 6 to 10). One of the most useful and detailed
approaches of rocket noise prediction was first developed by I. Dyer (Reference 6 ),
and later refined by Wyle Laboratories (Reference 9 ) and Wilhold, et al. (Reference 10).
In this approach, four basic characterisitcs of the rocket noise environment are considered
to be universal nondimensional functions:

The Spectral Function - The spectral function represents the spectrum of
overall noise produced by the entire rocket exhaust flow. The frequency
coordinate is normalized in the form of Strouhal number. The sound power
density can be represented in several forms. Both constant bandwidth and
one-third octave band spectral density may be used. The magnitude of
the spectral density can be normalized against the overall acoustical power
or to the mechanical power of the rocket exhaust flow itself. In the
method of Wyle Laboratories, the spectral function is given in terms of
one-third octave band level relative to overall sound power, while in the
Wilhold method, the spectral function is given in terms of sound power
density per unit Strouhal number per total mechanical power of the rocket
propulsion system. The shape of the spectral function is determined
empirically from data of rocket noise measurements.

Apparent Sound Source Locations - For noise radiation at a given Strouhal
number, most of the acoustical power comes apparently from a fixed
location in the exhaust flow. The assignment of such locations along the
exhaust flow has been studied extensively by dimensional analysis and
experimental measurements. Results from various -investigations vary
greatly, as can be seen from Figure 6 . Since the actual sound source
at a given Strouhal number is distributed rather than concentrated as a
point source, the apparent source location can not be uniquely defined.
Hence, in each method of rocket noise prediction, the assignment of
sound source location is highly arbitrary.

Directivity - The spectral function represents only the total sound power
density which is a sum of acoustical energy radiated into all directions.
The directivity pattern indicates the distribution of acoustical energy as
a function of direction, and it varies with frequency. In most rocket
noise prediction methods, the directivity patterns are given for specific
ranges of frequencies instead of Strouhal numbers. This is rather
unfortunate because such representation would only be valid for a pre-
determined class of rockets. The directivity pattern in the Wyle method,
which is derived from the work of Cole (Reference 7), is given in Figure 7.

Overall Sound Power - According to the Lighthill theory, the acoustical
power of a supersonic jet should be directly proportional to the mechanical
power of the jet exhaust flow itself. However, the proportional constant

8



does vary within a small range. The acoustical power can be 0.002 to 0.0048
times the mechanical power of the rocket exhaust flow. For most of the
large operational rockets, this ratio is very close to 0.003. For small
rockets, the acoustical power efficiency tends to decrease with the decrease
of the overall mechanical power. A typical curve is shown in Figure 8 .

At any given location on the vehicle, the sound pressure level spectrum can be computed
by using the above nondimensional functions and appropriate scaling factors. Other
effects such as shielding, ground effect, deflector configuration, and air absorption
must also be taken into account.

By using the above approach, some of the basic characteristics of the high pc engine

noise environment become immediately evident. For convenience, the engine perfor-
mance parameters and the acoustical properties of the F-1 rocket engine are chosen as
the basis for comparison in the following discussion.

The mechanical power of a rocket exhaust flow is half of the product of the thrust and
the exit velocity. For the high pc engine, the exit velocity has been increased by a

factor of 1.47. Hence, if both the thrust and the acoustic efficiency were kept constant,
the acoustic power level will be higher by the same factor. A factor of 1.47 is equiva-
lent to an increase of 1.6 dB.

According to Table I, the high pc engine is also much more efficient in terms of thrust

per unit nozzle exit area. Here, if the thrust were kept constant, the nozzle exit area
of the high pc engine will be smaller by a factor of 0.662, and the effective nozzle

diameter will be smaller by a factor of 0.814. By taking into account both the change
in exit velocity and effective nozzle diameter, the peak frequency of a high Pc engine
propulsion system, which has the same thrust as the propulsion system of the F-1
engines, will be higher by a factor of 1.8. This is slightly less than an increment of
one octave.

According to experimental data obtained so far on the high pc engine and other jets

with very high velocities, changes in the basic rocket noise characteristics have been
observed. First of all, the one-third octave band spectrum of the overall noise
radiation from the high Pc engine peaks at above Sn = 0.01. This is clearly lower

than the peak Strouhal number for the conventional rockets. Furthermore, the peak
region of the spectrum is broader, and beyond the peak the PWL declines with frequency
at a much smaller rate. The shift of peak Strouhal number toward lower values is con-
sistent with previous measurement. In the early rocket noise measurements, the exit
velocity of a typical rocket engine is approximately 7600 fps (Reference 7 ). The
nondimensional one-third octave band sound power spectrum peaks at a Strouhal
number greater than 0.030. Later measurement for rocket engines, such as F-1, the
peak Strouhal number was found to be near 0.020. It is not too surprising to find that
the high pc engine has yet a lower peak Strouhal number.
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In earlier rocket noise measurements, the directivity has a highly directional radiation
pattern for the higher frequencies. Most of the acoustic energy is in the direction
between 60 to 80 degrees from the downstream flow axis. It is surprising to find from
Saturn and other high speed jet experiments (References 10 and 11) that the directivity
pattern for high frequencies tends to be less directional and more uniformly distributed
in all directions.

As far as the scaling laws are concerned, there are only two important considerations:
the definition of Strouhal number, and the overall acoustic power as a function of the
total mechanical power of the propulsion system. In the class of large rockets, the
power efficiency will probably not change by any significant amount. On the other
hand, there have been many ways to define the Strouhal number:

· Normalization against the jet exit velocity fD/U

· Normalization against the ambient speed of sound fD/c

· Normalization against the true Mach number at the nozzle:

f D/U } { ce/c} = fD/c M

· Normalization against the speed of sound in the exhaust flow
fD/c .

Each definition is intended for a better data collapsing for the spectral function.
In the author's opinion, the first definition is perhaps most convenient. It is interesting
to note that the third definition seems to agree quite well with the analysis of the
generalized aerodynamical noise theory (Reference 5 ).

10



4.0 CHARACTERISTICS OF JET TURBULENCE

The noise radiation from a high speed jet exhaust is dependent on the nature of turbulent
flow field. In turn this turbulent field arises from, and governs the development of, the
mean flow. The principal objective of the present report has been to specify the relation-
ship between noise and the exhaust parameter. Hence for practical application to the
study of high p engine it is necessary to define accurately both the mean flow and the
turbulence. c

A substantial body of work is now available on the mean flow characteristics of
jet exhausts. Calculation of the mean flow invariably requires assumptions
as to the nature of the turbulent transfer mechanisms within it, and a
wide range of models have now been tested against the available mean flow data,
although rather little comparison of compressible flow cases has been accomplished.
Only relatively simple integral parameter descriptions are necessary for these mean
flow predictions. Although some properties of the turbulence related to noise predictions
can also be represented in terms of simple functions of mean flow properties, the degree
of refinement of description of the turbulence structure for noise prediction purposes is
considerably higher. Inspite of extensive experimental efforts devoted to the measure-
ment of jet turbulence structures, data is only available in the subsonic range. As far
as supersonic jet turbulence is concerned, one can only infer some of its properties by
using hypotheses (Reference 12); by comparison with the turbulence structure measured
in related flow conditions such as boundary layer and wake flow; and, ironically, by
deriving simple integral properties of the turbulence from the mean flow developments
of supersonic jet exhausts.

Hence in this section, the first part reviews the various possible assumptions on the
nature of turbulent mixing, with emphasis on their implications for noise prediction.
Based on a somewhat small collection of work on jet turbulence measurements, the
second part of this section therefore reviews the existing data. The discussions in this
latter part will be concentrated mainly in the definition of the integral spatial and
time scales of the turbulence structure and the magnitude of the turbulent intensity.

4.1 The Turbulent Mixing Assumption

It is probably worthwhile to give the primary equations governing the flow of a com-
pressible turbulent jet, through which various parameters of turbulent mixing are
defined. For the axisymmetric case, the continuity equation is

rapu arpv = (1)
ax + = 

and the momentum equation is

11



au au a7- r
pur ax + pvr a r (2)

where a cylindrical coordinate system is used. Equations (1) and (2) may be integrated
with respect to r to give

r r

T = a T p U2 rdr apurdr (3)

0 0

In Equation (2) 'r is the Reynolds stress given by

T = - puv

and in Equation (3) T' is the value of the Reynolds stress evaluated at the location r

The key to the solution of this equation is to establish a method for the prediction of

'r= p u v . It is noteworthy that p u v also appears as the principal quadrupole source
strength in the noise generation equations. Thus calculations of both noise and mean
flow require evaluation of virtually the same dynamic quantities. There are two subtle
differences between these cases, however. Firstly, the noise case requires evaluation of
pu u. and thus includes the diagonal terms of the Reynolds stress tensor like pu2 as

well as p u v . Secondly, the shear stress affects the mean flow only through its mean,
while it affects the noise through its mean square value.

Nearly all methods of calculating shear flows rely on some form of the momentum trans-
fer theory. As shown in Reference 17, the assumption that momentum is a transferable
quantity allows the expression for shear stress to be written as

T = - puv = f'v apu (4)

where 2' is a "mixture length". An extension of these arguments leads to the possibly
more familiar form of Prandtl's mixing length

7= 2 auI au (5)ay ay
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where the mixing length P is not equal to the mixture length ' .

It is worth noting that the form derived for Equation (4) includes a density term in the
differential. In all the formulae derived hereafter the density term is taken outside the
differential. To the writer's knowledge no momentum transfer theory has used the density
differential even for compressible cases, and this may justify further study.

An alternative approach is to model the turbulence stress system in the same way as the
viscous stress system, by defining

au
'7 = p V. y- (6)

where VT is an "eddy viscosity". Eddy viscosity models for turbulent flows have tended

to be rather inaccurate predictions, but are often used because of their simplicity. For
example, Prandtl suggested putting

VT = KbAu (7)

where b is a width scale, Au is the velocity difference across the shear layer and
K is an empirical constant of order 0.01. This formulation has the advantage that eddy
viscosity is assumed constant across any jet station, and thus only varies with axial
position. Several other models for eddy viscosity have been put forward. Useful
evaluation and reviews are presented by Harsha (Reference 14) and Rotta (Reference 15).

For much of the work in the present report the method of Donaldson and Gray (Reference
2) is used to predict the rocket exhaust profiles. Donaldson and Gray used an eddy
viscosity model of the Prandtl form, Equations (6) and (7), for the turbulent shear
stress:

au7 = Kpb u au (8)
5 ar

The value of u is taken to be half the difference between centerline and external
5

flow velocities, and b equals to the radial distance between the centerline (or the
edge of the core r. ) and the half velocity point r5 . A Gaussian form for the velocity

profile was assumed for the developed region of the jet. For the core region, similar
assumption was made. At the edge of the core, a discontinuity in the slope of the
profile was allowed. Hence, there may be some objections as to the assumptions made
by Donaldson and Gray about the flow profiles. On the other hand they did allow a
full evaluation of the effects of compressibility and for a full range of possible exhaust
gas parameters. Reasonably acceptable agreement of the prediction with experiment
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was found. It is worth noting that the computation and the comparison with experiment
showed that the effects of compressibility and heat transfer in the equations are
dominant, with details of the turbulent exchange model being of lesser importance.
Extensions to the work of Donaldson and Gray would appear to be valuable at least
because the detailed flow parameters required for noise prediction are extremely
difficult to measure in a real rocket exhaust flow.

4.2 Details of the Turbulence Structure

Virtually all jet noise calculation models have assumed the turbulence to be isotropic.
Indeed the major part of all theoretical work on turbulence is based on isotropic assump-
tions. The resulting simplifications are normally a prerequisite to further calculation.
However, the isotropic assumption is violated by shear flows. Lateral and longitudinal
turbulent intensities are not found to be equal. The isotropic assumption also implies
zero mean Reynolds stress, but it is just the stress effects of the turbulence which
dominate the development of the mean flow. The ratio of mean Reynolds stress to
turbulent energy has been found by Harsha (Reference 14) to be 0.3. One of the first
estimates of Reynolds stress, by von Karman as reported in Reference 13, indicated a

ratio puv / pu2 of 0.33.

However, there is some evidence that the subsonic jet turbulence is isotropic. Turbulence
scale measurements from a number of publications are summarized in Table II. The
isotropic model requires that all longitudinal scales (that is, those measured in the same
direction as the velocity component), are equal. The isotropic model also requires that
the lateral scale to be one-half of the longitudinal. These conditions are approached
by the data rather well.

For supersonic flows, isotropic structure for the turbulence is much less evident. It
has been reported that the ratio of longitudinal to transverse scale can be as high as
10 to 18, which far exceeds a value of two for the isotropic assumption (References 16
and 1 7).

Analytically, prediction of jet noise requires knowledge of the turbulence in such great
details as the space-time-correlation functions or the wavenumber-frequency-spectra
of the turbulent fluctuations. Such measurements have been undertaken by Chu
(Reference 18) for a subsonic jet. In that case, the correlation function can be repre-
sented as an analytical function by curve fitting. In Reference 19, it is found that the
noise prediction for quantities such as spectrum, source location, etc., are not particu-
larly sensitive to the details of the turbulence. The most important parameter is, rather,
the integral spatial and time scales. Recently, it is found in Reference 5 that the
directivity of sound radiation does depend on the source spectrum. However, satisfactory
prediction of directivity can be obtained if the source structure were specified within
reasonable limits. A moderate amount of data is now available on the length scale of
the axial velocity component, and this is plotted on Figures 9 and 10.
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TABLE II. LONGITUDINAL AND TRANSVERSE INTEGRAL SPATIAL
SCALES OF JET TURBULENCE

Bradshaw, Ferriss, and Johnson

x/r 0 =4 M=0.3 D=2" y/r 1

r, O 0 O , +r, 0 0, -r, 0 0, O, r

R11 0.0445 0.033 0.024 0.0064

R22 0.015 0.044 0.048 0.038

R33 0. o012 0.016 0.024 0.087

Chu

x/r ° = 8 M = 0.127 D = 4" y/r = 1

r, O, 0 0, r, 0 0, 0, r

L/D 0.191 0,138 0,023

L 45j/D 0.168 0,187 0.025

L 60/D 0.144 0,223 0.048

L /D 0.0477 0.0345 0.0057

L45 /D 0.042 0.0467 0.0062

L
6 0/D 0.038 0.0557 0 o012
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Data from several experiments (References 20 through 22) indicates that the ratio
Lx/x reduces with axial distance. Typically beyond the end of the core region

(x/D = 5). Against this must be set the data of Bradshaw, Ferris and Johnson (Reference
23), and of Chu, who both found a substantially lower value of scale than the other
workers, around L /x = 0.5. Furthermore, data taken by Wygnanski and Fiedler

(Reference 24) indicates a value of L /x somewhat larger than 0.05. (Wygnanski and

Fiedler also found a variation of scale across the jet.) Laurence's data was some of the
first taken and there are obvious inconsistencies in his data beyond x/D = 5. However,
the differences between the other two groups of experimenters are less easy to explain.
The Davies, Fisher and Barrett results were based on a one inch diameter jet and may
suffer from a scale effect due to boundary layer development in the nozzle. However,
Sami's results were taken on a 12 in. diameter jet. Nevertheless the data of Bradshaw,
et al., and Chu apparently represent the results of considerable care and have been
given more weight here. Thus it is concluded that turbulent scale L is equal to about

0.065 x over the whole length of the jet. The variation with radius is unimportant and
is ignored.

Turbulent intensities in the jet flow are a strong function of position. Many workers
have presented data on the fluctuating velocities, but the most useful data for the
present purposes was taken by Tu (Reference 25). Curves taken from his report (Figures
40, 41 and 42) give the magnitude of the three components of turbulent intensity at
various stations down the jet.

It will be observed that the curves have peak intensity in line with the nozzle lip at
x /D = 0.5 over almost the whole length of the jet exhaust flow. Near the end of the

2

jet core (x /D = 4.0) the u component turbulent intensity reaches a maximum of

0.16 u. , while the v component reaches around 0.12 u. and the w component
J J

reaches 0.13 u. . There is a weak tendency towards increased isotropy further away
J

from the jet axis, but the data of Wygnanski and Fiedler reveals no tendency toward
increased isotropy along the jet axis. Wygnanski and Fiedler's data is of value because
it was taken very far down the jet, and therefore provides a good basis for interpolation.
In the initial region of the jet the turbulence is a maximum at the point of maximum
shear in the jet, while far downstream it is at a maximum on the centerline. It is of
particular interest that in each case the maximum intensity is around 27% of the local
velocity at that point.

Thus a useful empirical method for predicting peak turbulence intensity is to assume
that it is simply 0.27 of the velocity at a point in line with the nozzle lip (x/D = 0.5).
This simple model is found to hold with remarkable accuracy over the whole length of
a subsonic jet. The rather minor variations of the v and w components of intensity
from this model can probably be ignored.

16



From this point of view of noise radiation, an important role is played by the moving
axis timescale L

t
, which appears to the fourth power in the Pao-Lowson analysis

based on the Lighthill jet noise model. Lighthill suggested that this time scale was
inversely proportional to the turbulence intensity, and thus is found on a reinterpretation
of the results of Davies, Fisher and Barrett, as shown by Lowson and Pao (Reference 19).
It was found there that

Lt = 0.76 L /u

The data of Wygnanski and Fiedler for the jet far downstream suggests that, approximately

L = 0.25 L /ut x rms

so that there is some experimental indication that time scales involve rather more
complex parameters than turbulent intensities alone. However, in the absence of any
more complex experimental information little more can be said.

Theoretically, the most useful hypothesis appears to have been advanced by Morkovin
(Reference 12) who assumed that the turbulent structure was essentially unchanged in
high speed flow unless the local turbulent velocities were themselves supersonic. For
the characteristic jet exhaust flows studied here this would correspond to exit convec-
tion Mach numbers of around 7.0.

Some indication of the possible effects can be found by returning to the mean flow
models considered at the beginning of this chapter. The shear stress models essentially
involve assuming that turbulent intensity is proportional to a typical velocity divided
by a typical (transverse) scale. One of the simplest models was used by Eldred
(Reference 26), who assumed a full mixing length expression of the form

r = p k c2 b2 aI au

where b is a local transverse scale parameter appearing in the Gaussian shape, assume
k is a mixing coefficient to be determined, and c = L/b where I is a "mixing
length".

Eldred indicates that I is two-thirds of the lateral scale, which is just one-third of the
longitudinal scale L for isotropic turbulence. Thus

cxXc = L x/3b
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Also, Eldred finds that, on solution of the momentum equation

Xc 0.32
r kc 2
e

where x is core length, re is exit radius, and k = 0.88.

Using these results gives:

L = 1.8bf

For a low speed jet exhaust, at the core tip b = re and Xc/re t 10 , so that scale

there is predicted to be 0.57 re , in comparison with the 0.65 re predicted from the

empirical formula L = 0.065 x given earlier. Thus some agreement between theory

and experiment is found.

But the significance of the result is less in the absolute magnitudes predicted than in the
general trend. Core length increases markedly with increasing Mach number, and the
model above indicates that scale will vary as the inverse square root of this, causing
a reduction in scale at supersonic speeds. It appears that a similar interpretation applied
to the Donaldson and Gray eddy viscosity model would result in a variation of scale as
the inverse first power of core length. Certainly shadowgraph pictures suggest a finer
grained structure to the supersonic turbulence, but it is shown that such indications
cannot necessarily be taken literally.

Donaldson and Gray's model takes:

U aur= Kpr ai
5 2 ar

and essentially includes a single power of scale L in the K term. Donaldson and Gray's
results do show a reduction in K by a factor of as much as 2, and this could be taken
to indicate an equivalent reduction in scale in the compressible case.

The value of a! = LX/U Lt would not show an equivalent reduction following the

argument that time and space scales are related through turbulent intensity. But again
little information on turbulent intensity is available, so that this conclusion cannot
be relied on absolutely.
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To summarize then, the effect of compressibility on turbulent intensity, and on the ratio
of time to space scales is not expected to be great, but there is evidence that scale is
somewhat reduced. For the present work in which the Donaldson and Gray work is
used extensively, it is recommended that L be taken proportional to K.

X
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5.0 NUMERICAL PREDICTION OF THE HIGH pc ENGINE NOISE CHARACTERISTICS

One of the most important objectives of this report is to determine the high Pc engine

noise characteristics through analytical calculations. At the present time, data
collected from the high p engine is not in sufficient quantity to clearly define its
differences with conventional rocket exhaust flows. Without knowing the trends of
noise characteristics as a function of exhaust speed, flame temperature, or chamber
pressure, it is not feasible to extrapolate the existing rocket noise data to predict the
high p engine noise with sufficient accuracy.

In this report, the generalized aerodynamical noise theory is employed to predict the
noise environment. The required formulae and details of this method have been reported
recently in Reference 5 , and these discussions will not be repeated here. As discussed
in earlier parts of this report, an accurate noise prediction requires the knowledge of
mean flow and turbulence properties of the entire rocket exhaust. The mean flow
properties can be computed by the Donaldson and Gray method with reasonable accuracy.
The following assumptions have been made for the turbulence structure:

* The local turbulent integral spatial scale is 0.6 of the local turbulent
jet thickness. The thickness is defined as the width of the mixing zone
in the core region, and the radius of the jet in the transition and
developed regions.

· The wavenumber-frequency spectrum of the turbulence structure is
assumed to follow a power law, as given in Reference 5. The non-
dimensional ratio of spatial to time scale ac, is assumed to be 0.30.
It remains constant throughout the exhaust flow. In the high super-
sonic sections of the exhaust, the turbulence structure is assumed to
be anisotropic with a longitudinal to transverse scale ratio of 2.
In the downstream regions, the structure is assumed to be isotropic.

* The turbulent intensity of velocity fluctuations is the most difficult
quantity to define, since no experimental indication is available.
It is therefore defined arbitrarily for given axial stations:

(u2 )I = 0.16c if M>1

1

(u2 2 = 0.16 U if M<1
1 1

where ( u2 ) 2 represents the local maximum of turbulent intensity,

c is the local speed of sound, U is the local maximum axial

velocity, and M is the true Mach number at the same axial station.
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The profile of the local turbulent intensity across the jet is assumed
to be a Gaussian distribution. Furthermore, the source intensity is

modified also by a factor (K/K0 ), where K is the local mixing

0
parameter, and K is the mixing parameter at zero convection

Mach number.

The inability to define the turbulent intensity of velocity fluctuations precludes the
prediction of overall sound power from the jet. However, an indicative sound source
distribution along the exhaust flow can be computed. Detailed discussions will be
given later in this section.

A comprehensive noise prediction program has been developed in the present study.
The entire rocket exhaust flow is divided into many small volume elements for which
the mean flow properties are first computed. By using the computed mean flow properties
and the assumed properties of the turbulence, noise radiation from each folume element
is computed. Calculations have included the following properties of noise radiation

· Directivity

· Local spectrum of radiation

· Relative magnitude of overall sound power

The program permits summation of noise contribution from volumes in a section of the
jet, or a summation over all the volume elements in the jet. In the former case, the
following information can be obtained:

· Characteristic frequency at a given section

· Noise spectrum from a section of the jet

· Spectrum as a function of direction

· Sound source location - overall noise

· Apparent source location as a function of direction

· Source strength distribution along the jet axis.

In the latter case, the following can be obtained:

· Directivity as a function of frequency

· The far-field noise spectrum

These results will be discussed in the remainder of this report, calculations have been
made for both the high pc engine and the F-1.
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5.1 Local Noise Radiation Characteristics

At a given station along the exhaust flow, the cross-section of the jet is divided into
six annular volume elements. Noise radiation from each element is computed according
to the local mean flow and turbulent properties, and the results are summed over these
six elements. In the core region, volume of the core is excluded from the calculation,
and the region between the edge of the core to the boundary of the jet is divided into
six parts.

Sound radiation intensity at a given Strouhal number is computed from 0 to 180 degrees
at 2 degree intervals, and the integrated acoustic power over all directions has also
been computed. The directional pattern of the acoustical intensity is given in the
computer output only at 60, 90, 120 and 150 degrees. The computed results are given
in tabular form in the Appendix. A total of thirteen frequencies are investigated at each
station, and a total of 16 stations are studied for both the high pc and F-1 rocket exhaust

flows. The ranges of computation are summarized in Table III.

The overall noise spectra and the spectra at 1500 are presented for the F-1 exhaust
flow (Figure 11) and the high pc exhaust (Figure 12). A number of important conclusions

can be observed from these figures. Firstly, the shape of the spectrum changes with the
characteristic convection velocity at each section. For sections with very large con-
vection Mach numbers, the spectrum has a "plateau" region which spans across
frequencies of over a decade. The peak frequency location is rather sensitive to a
small change of the slope in the plateau region. For smaller convection Mach numbers,
the width of the peak region decreases. The spectral shape of the local noise radiation
resembles the spectrum of low speed jet exhaust flows. Secondary, it is interesting to
note that the upstream radiation spectrum has a very large shift toward lower frequencies
in relation to the overall spectrum. Although this phenomenon is expected from a
theoretical standpoint, it is the first time that such spectra are computed.

The local spectra for the high Pc exhaust and the F-1 flow do not appear to be much

different at a casual review. However, along the main noise production region of
these flows, the high Pc exhaust flow has a larger number of "flat top" spectra than the

F-1 exhaust flow. This is mainly because the characteristic velocity in the high pc

exhaust flow is much higher. Since the overall noise spectrum is a sum of all the
local spectra, it is expected that the overall noise spectrum for the high pc engine has

a broader peak region than the F-1 engine noise. This is, indeed, the result of the
overall noise computation which will be given later in this section.

According to the peak frequency at each station, the sound source location can be
established, as presented in Figure 13. It is surprising to find from this figure that the
computed sound source location for the high Pc and the F-1 engines are extremely close
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TABLE III. RANGES OF COMPUTATION

23

Frequencies 0.00125, 0.0025, 0.005, 0.010, 0.020, 0.040

2'Sn 0.080, 0.160, 0.320, 0.640, 1.280, 2.560, 5.120

Axial Stations 5, 10, 15, :20, 25, 30, 35, 40,

x/D 50, 60, 80, 100, 120, 160, 200, 240

Directional Pattern OVERA LL, 60, 90, 120, 150.

at: Degrees



together. Indeed, the source locations for radiations in the 150 degree direction
actually coincide for these two cases. Source locations as defined by this method are
actual source location. If the wave propagation path through the jet exhaust flow were
also taken into account, then the observed, or "apparent" source location should lie
further downstream. The source locations as given in Figure 13 are re-plotted in Figure
14. The derived apparent source locations are shown in dashed curves. On the same
graphs, two sets of experimental curves are also shown. The first is taken from
Mull, et al. (Reference 27) and the second set is taken from Smith (Reference 11).
The predicted source location agrees extremely well with these experimental evidences.

The directivity at the peak frequency of each section have been computed for both engines.
The results are shown in Figures 15 and 16. The comparison of these directivity patterns
with experimental data in the high frequency and the very low frequency ranges has been
found to be very favorable (Reference 5). This is perhaps a good indication that noise
emission at such Strouhal number ranges comes mainly from the neighborhood of the
apparent source location.

The sound source location in the 150 degree direction has very important practical
implications. The acoustical pressure fluctuations received at the space vehicle itself
are mainly upstream radiations. The 150 degree angle is quite typical. Hence, the
apparent sound sources should appear to be much further upstream than the measured
apparent source locations. Furthermore, one must keep in mind that the 150 degree
source location can not be measured by techniques such as the traversing microphone
method. In such measurement, the results are always dominated by the downstream
radiations at the same frequency but a much higher intensity. The 150 degree source
locations will be completely masked. It is interesting to note that the source location
assignment in the Wilhold method is quite close to the 150 degree curve in the low
Strouhal number range, and it is close to the overall predicted curve in the higher
Strouhal number range. This would have been also a logical choice if the above
arguments are taken as the basis.

In spite of the inadequate definitions of the intensity of turbulence, the computed
sound source strength distributions are shown in Figure 17. In both cases, the sound
source strength per unit length of the jet increases initially with the distance from the
nozzle exit. A maximum is reached near the sonic point of the exhaust flow. Beyond
the peak source location, the acoustic power drops rapidly. The rate of decline is much
larger than x - 7 . This is mainly because the mean flow velocity along the centerline
of the jet decays at a rate much faster than the x- relationship, which is commonly
assumed in previous analytical studies. In view of the excellent agreement of source
location predictions, the fast rate of decline of the source strength distribution, as
predicted here, is perhaps very close to reality.

The prediction of sound source strength in the core region is perhaps too low. For
example, it could have been excessively- penalized by the factor (K/K )½ in the

0
definition of the turbulence intensity. By removing this factor, the relative power
level in this region will probably increase by a factor of 4, in relation to the peak.
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However, this change should not alter the tendency of sound power increase as a
function of the distance from nozzle exit.

5.2 Predicted Overall Noise Characteristics

The following properties of the overall noise environment have been computed for both
the high pc and the F-1 rocket engines:

* The sound power spectrum

* The overall noise directivity, and

· Directivity patterns at given Strouhal numbers.

Comparisons with data have been made. It is worthwhile to review here the restrictions
of the computation. In this study, only a very simple model of turbulent intensity
distribution in the exhaust flow is assumed. Figure 17 indicates that the contribution
from the initial section of the exhaust flow may be underestimated. Consequently,
the spectral density prediction in the high frequency end will not be accurate. The
effect on directivity patterns at very high Strouhal numbers is more drastic. With an
underestimation of sound power in the core region, the predicted directivity pattern at
a large Strouhal number will not be dominated by radiations in the neighborhood of the
apparent source location, but the "residue" radiation from the strong source region
further downstream. Directivity patterns in the low Strouhal number range are also
influenced to some extent by radiations from the strong source region.

Figure 18 shows the predicted one-third octave sound power spectra for the high pc

engine peaks at a Strouhal number of 0.01, and the peak Strouhal number for the F-1
engine is slightly higher at 0.020. Hence, the increase in frequency of the high pc

engine owing to a smaller diameter and a higher exit velocity is partially neutralized
by a downward shift of the basic spectral function. If the noise source strength in the
core region were increased to a higher value, the predicted spectrum for either rocket
would become slightly broader in shape, and the levels in the high frequency range will
increase by approximately one or two dB.

The predicted overall noise directivity curves are shown in Figure 19. For both engines,
the upstream noise radiation patterns are almost the same. They are slightly different
in the forward direction. The effect of higher convection velocity cause the peak of
noise radiation to be shifted to a higher angle. Some experimental data for these rocket
engines are given on the same figure (Reference 28). The agreement with the Saturn
noise data is good between 30 to 90 degrees while agreement in upstream directions is
rather poor. Comparison with the high Pc engine data is only fair for all directions.

Further investigation in both analytical and experimental aspects of noise directivity is
definitely necessary.
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The directivity patterns for a range of Strouhal numbers have been predicted for the
case of high p engines. These patterns are shown in Figure 20. Corresponding
measured directivity patterns from Reference 11 are shown on the same figures. The
agreement between prediction and experiment in the peak frequency range is very
good. The difference is generally less than two dB. However, comparison in the
mid-frequency range is not conclusive. Differences are often between 3 to 5 dB.

For Strouhal numbers smaller than approximately 0.002, the experimental data actually
agrees very well with the predicted directivity in the neighborhood of the apparent
source location (Figure 16). Such comparison has been made previously in Reference 5.
This is perhaps an indication that the contribution from the peak source region is
overestimated in the present calculation such that the true directivity for the lower
frequencies have been partially masked. Further refinement of the prediction method
is necessary for an accurate prediction of the detailed noise directivity characteristics.
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6.0 CONCLUSIONS

In this report, the acoustical environment for the high combustion chamber pressure
engine has been examined in detail by using both conventional methods and advanced
theoretical analysis. The major conclusions are summarized as follows:

a) The principal influence of the high chamber pressure on the rocket noise
environment is established through increases of exit velocity, flame temperature,
and changes of basic engine dimensions.

b) If the thrust were held constant, the overall sound power of the high pc engine

will be approximately 1.5 dB higher than the conventional rocket sound power
level.

c) The one-third octave sound power spectrum is expected to have a broad peak
frequency region, and the peak Strouhal number is expected to be approxi-
mately 0.01, which is slightly lower than the observed peak Strouhal number
for propulsion systems such as F-1 engines for the Saturn vehicle.

d) The sound source location for the high pc engine has been investigated by

theoretical predictions. No significant change is detected between the F-i
and high Pc engines. These computed results agree very well with the

experimental data.

e) The apparent sound source locations for noise emission in the 1500 direction
have been computed. This is considered to have great practical significance.

f) The noise directivity patterns at various given Strouhal numbers have been
computed. Excellent agreement has been obtained near and above the peak
frequency range. Comparison in the lower frequencies is not conclusive.
However, the numerical computations indicate that it is feasible to obtain
better prediction through a refinement of the method.
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Figure 1. Hydrogen/oxygen combustion products characteristics and
propellant performance. The maximum specific impulse
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Figure 7. Far-Field Directivity Curves
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TABLES FOR

-THE MEAN FLOW PARAMETERS OF

THE F-1 ROCKET ENGINE
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TABLES FOR

THE MEAN FLOW PARAMETERS OF

THE HIGH CHAMBER PRESSURE ENGINE
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TABLES FOR

THE LOCAL NOISE EMISSION SPECTRA

AT VARIOUS ANGLES - THE F-i ENGINE
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TABLES FOR

THE LOCAL NOISE EMISSION SPECTRA AT

VARIOUS ANGLES - THE HIGH CHAMBER PRESSURE ENGINE
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